Is GCP Down? Complete Google Cloud Status Check Guide + Quick Fixes
Compute Engine instances not responding?
Cloud Run deployments failing?
BigQuery queries timing out?
Before panicking, verify if GCP is actually down—or if it's a configuration, quota, or authentication issue on your end. Here's your complete guide to checking Google Cloud status and fixing common issues fast.
Quick Check: Is GCP Actually Down?
Don't assume it's GCP. 80% of "GCP down" reports are actually quota limits, IAM permission issues, misconfigured services, or regional problems—not global outages.
1. Check Official Sources
Google Cloud Status Dashboard:
🔗 status.cloud.google.com
What to look for:
- ✅ All green checkmarks = GCP is operational
- 🟡 Yellow icon = Service disruption in progress
- 🔴 Red icon = Service outage
- 🔵 Blue icon = Scheduled maintenance
Real-time updates:
- Compute Engine status
- Cloud Run availability
- Cloud Functions health
- BigQuery service status
- Cloud Storage operations
- GKE (Kubernetes Engine) health
- Cloud SQL databases
- Pub/Sub messaging
- Regional and global services
Pro tip: Click on any service to see incident history and affected regions.
Google Cloud Support Twitter/X:
🔗 Search "GCP down" or @googlecloud
Why it works:
- Developers report outages instantly
- See if others in your region are affected
- Google Cloud team posts official updates here
Pro tip: If 200+ tweets in the last hour mention "GCP down" in your region, it's likely a real outage.
Google Workspace Status Dashboard:
🔗 google.com/appsstatus
Note: This is for Gmail, Drive, Calendar, etc.—NOT Google Cloud Platform. Common confusion point.
2. Check Service-Specific Status
GCP has 100+ services that can fail independently:
| Service | What It Does | Check Status |
|---|---|---|
| Compute Engine | Virtual machines (VMs) | Compute Engine Status |
| Cloud Run | Serverless containers | Cloud Run Status |
| Cloud Functions | Serverless functions | Cloud Functions Status |
| BigQuery | Data warehouse | BigQuery Status |
| Cloud Storage | Object storage (GCS) | Cloud Storage Status |
| GKE | Kubernetes clusters | GKE Status |
| Cloud SQL | Managed databases | Cloud SQL Status |
| Pub/Sub | Message queue | Pub/Sub Status |
Your service might be down while GCP globally is up.
How to check which service is affected:
- Visit status.cloud.google.com
- Filter by service or region
- Check "Incident History" for recent issues
- Subscribe to status updates (email notifications)
- Use RSS feed for automated monitoring
3. Check Regional vs Global Issues
GCP operates in 40+ regions worldwide. An outage in us-central1 doesn't affect europe-west1.
How to identify regional issues:
Option 1: Status Dashboard Filtering
- Visit status.cloud.google.com
- Click affected service
- Look for "Affected locations" in incident details
- Check if your region is listed
Option 2: Test from Different Region
# Test API from different region
gcloud compute instances list --zones=us-central1-a
gcloud compute instances list --zones=europe-west1-b
If one works and other fails: Regional outage confirmed.
Common regional patterns:
us-central1(Iowa) — Most common, highest trafficus-east1(South Carolina) — Second most commoneurope-west1(Belgium) — European workloadsasia-southeast1(Singapore) — Asia-Pacific
Pro tip: Multi-region deployments protect against regional outages. Consider failover strategies for critical services.
Common GCP Error Messages (And What They Mean)
Error 403: "The caller does not have permission"
What it means: IAM permissions issue—your account/service account lacks required roles.
Common causes:
- Service account missing roles
- Project-level permissions not granted
- Organization policy blocking access
- API not enabled for project
Quick fixes:
1. Check IAM roles:
# Check your permissions
gcloud projects get-iam-policy PROJECT_ID \
--flatten="bindings[].members" \
--filter="bindings.members:YOUR_EMAIL"
# Grant necessary role (example: Compute Admin)
gcloud projects add-iam-policy-binding PROJECT_ID \
--member="user:YOUR_EMAIL" \
--role="roles/compute.admin"
2. Enable required API:
# Check enabled APIs
gcloud services list --enabled
# Enable API (example: Compute Engine)
gcloud services enable compute.googleapis.com
3. Check service account:
# View service account roles
gcloud projects get-iam-policy PROJECT_ID \
--flatten="bindings[].members" \
--filter="bindings.members:serviceAccount:SA_EMAIL"
Error 429: "Quota exceeded"
What it means: You've hit API quota limits or resource quotas.
Common causes:
- API request rate limit exceeded
- CPU/memory quota exhausted
- Disk quota reached
- IP address quota limit hit
Quick fixes:
1. Check quota usage:
# View quotas
gcloud compute project-info describe --project=PROJECT_ID
# Or visit Cloud Console:
# IAM & Admin → Quotas
2. Request quota increase:
- Console → IAM & Admin → Quotas
- Filter by service (e.g., "Compute Engine API")
- Select quota (e.g., "CPUs")
- Click "EDIT QUOTAS"
- Request increase (justify business need)
- Wait for approval (usually 24-48 hours)
3. Implement exponential backoff:
# Retry with exponential backoff
import time
from google.api_core import retry
@retry.Retry(predicate=retry.if_exception_type(Exception))
def call_api():
# Your API call here
pass
4. Temporary workaround:
- Delete unused resources
- Use different region (separate quotas)
- Upgrade to paid tier (higher limits)
Error 500: "Internal Server Error"
What it means: Something wrong on Google's side—server error, not your code.
Common causes:
- Temporary service glitch
- Backend service degraded
- Database connection issue
- Deployment in progress
Quick fixes:
1. Retry the request:
- Most 500 errors are transient
- Wait 30-60 seconds and retry
- Implement automatic retry logic
2. Check status dashboard:
- Visit status.cloud.google.com
- Look for active incidents
- Subscribe to updates
3. Try different region:
# If us-central1 fails, try us-east1
gcloud config set compute/region us-east1
4. Contact support:
- If persistent, file support ticket
- Include request ID from error message
- Provide timestamp and affected service
Error 503: "Service Unavailable"
What it means: Service temporarily unavailable—could be maintenance or overload.
Common causes:
- Scheduled maintenance window
- Service overloaded
- Regional capacity issue
- Cold start timeout (Cloud Functions/Cloud Run)
Quick fixes:
1. Check maintenance schedule:
- Console → Compute Engine → VM instances → Maintenance events
- status.cloud.google.com shows planned maintenance
2. Increase Cloud Run/Functions resources:
# Cloud Run: Increase CPU/memory
apiVersion: serving.knative.dev/v1
kind: Service
spec:
template:
spec:
containers:
- resources:
limits:
cpu: "2"
memory: "1Gi"
3. Set minimum instances (avoid cold starts):
# Cloud Run: Set minimum instances
gcloud run services update SERVICE_NAME \
--min-instances=1 \
--region=REGION
4. Implement retry logic:
- Wait and retry (exponential backoff)
- Use Cloud Tasks for async processing
- Implement circuit breaker pattern
Error 404: "Not Found"
What it means: Resource doesn't exist—wrong name, region, or project.
Common causes:
- Wrong resource name/ID
- Resource in different project
- Resource in different region
- Resource was deleted
Quick fixes:
1. Verify resource exists:
# List all instances
gcloud compute instances list --project=PROJECT_ID
# List Cloud Run services
gcloud run services list --platform=managed
# List Cloud Storage buckets
gcloud storage buckets list
2. Check correct project:
# View current project
gcloud config get-value project
# Switch project
gcloud config set project PROJECT_ID
# List all your projects
gcloud projects list
3. Check correct region:
# Specify region explicitly
gcloud compute instances describe INSTANCE_NAME \
--zone=us-central1-a
Error 401: "Unauthorized"
What it means: Authentication failed—expired token, wrong credentials, or revoked access.
Common causes:
- Application Default Credentials (ADC) not configured
- Service account key expired/revoked
- gcloud auth not set up
- OAuth token expired
Quick fixes:
1. Authenticate gcloud:
# Login with your account
gcloud auth login
# Set application default credentials
gcloud auth application-default login
2. Check service account key:
# Verify service account
gcloud auth list
# Activate service account
gcloud auth activate-service-account SA_EMAIL \
--key-file=PATH_TO_KEY.json
3. Refresh credentials:
# Revoke and re-authenticate
gcloud auth revoke
gcloud auth login
4. Check environment variables:
# Verify GOOGLE_APPLICATION_CREDENTIALS
echo $GOOGLE_APPLICATION_CREDENTIALS
# Set it if missing
export GOOGLE_APPLICATION_CREDENTIALS="/path/to/key.json"
Quick Fixes: GCP Not Working?
Fix #1: Check gcloud CLI Authentication
Why it works: 90% of GCP issues are authentication or project misconfiguration.
Verify setup:
# Check current auth account
gcloud auth list
# Check current project
gcloud config get-value project
# Check current region/zone
gcloud config get-value compute/region
gcloud config get-value compute/zone
Expected output:
ACTIVE ACCOUNT
* your-email@example.com
PROJECT_ID: your-project-123
REGION: us-central1
ZONE: us-central1-a
If missing or wrong:
# Set correct project
gcloud config set project YOUR_PROJECT_ID
# Set default region
gcloud config set compute/region us-central1
gcloud config set compute/zone us-central1-a
# Re-authenticate
gcloud auth login
gcloud auth application-default login
Fix #2: Enable Required APIs
GCP APIs are disabled by default. Enabling them is the #1 forgotten step.
Check enabled APIs:
# List enabled APIs
gcloud services list --enabled
# List available APIs
gcloud services list --available
Enable common APIs:
# Compute Engine
gcloud services enable compute.googleapis.com
# Cloud Run
gcloud services enable run.googleapis.com
# Cloud Functions
gcloud services enable cloudfunctions.googleapis.com
# BigQuery
gcloud services enable bigquery.googleapis.com
# Cloud Storage
gcloud services enable storage.googleapis.com
# GKE
gcloud services enable container.googleapis.com
# Cloud SQL
gcloud services enable sqladmin.googleapis.com
Enable via Console:
- APIs & Services → Library
- Search for service (e.g., "Cloud Run")
- Click service → "ENABLE"
Pro tip: Enabling APIs can take 30-60 seconds. Don't retry immediately.
Fix #3: Check Billing Account
GCP requires active billing for most services (even with free tier credits).
Verify billing:
# Check billing account
gcloud beta billing projects describe PROJECT_ID
Expected output:
billingAccountName: billingAccounts/XXXXXX-XXXXXX-XXXXXX
billingEnabled: true
If billing not enabled:
- Console → Billing
- Link project to billing account
- Enable billing for project
Common billing issues:
- Credit card expired
- Free tier credits exhausted
- Billing account suspended
- Project not linked to billing account
Check billing status:
- Console → Billing → Account Management
- Look for "ACTIVE" status
- Check spending limits/budgets
Fix #4: Verify IAM Permissions
"Permission denied" is the most common error—even for project owners.
Check your roles:
# View your permissions
gcloud projects get-iam-policy PROJECT_ID \
--flatten="bindings[].members" \
--filter="bindings.members:$(gcloud config get-value account)"
Common required roles:
- Compute Admin → Create/manage VMs
- Cloud Run Admin → Deploy Cloud Run services
- Storage Admin → Manage Cloud Storage
- BigQuery Admin → Query and manage datasets
- Editor → General development access
- Owner → Full project access
Grant yourself missing roles:
# Example: Grant Compute Admin
gcloud projects add-iam-policy-binding PROJECT_ID \
--member="user:YOUR_EMAIL" \
--role="roles/compute.admin"
For service accounts:
# Grant service account Cloud Run Admin
gcloud projects add-iam-policy-binding PROJECT_ID \
--member="serviceAccount:SA_EMAIL" \
--role="roles/run.admin"
Fix #5: Check Resource Quotas
Quotas prevent runaway costs—but also block legitimate usage.
View quota usage:
- Console → IAM & Admin → Quotas
- Filter by service
- Look for quotas near 100% usage
Common quota issues:
- CPUs: Default 24 CPUs per region
- In-use IP addresses: Default 23 per region
- Persistent disk SSD: Default 500 GB per region
- Cloud Run requests: Default 1000/second
Increase quota:
- IAM & Admin → Quotas
- Select quota to increase
- Click "EDIT QUOTAS"
- Enter higher limit + justification
- Submit request
Temporary workaround:
# Deploy to different region (separate quotas)
gcloud run deploy SERVICE_NAME \
--region=europe-west1 \
--image=gcr.io/PROJECT_ID/IMAGE
# Or delete unused resources
gcloud compute instances delete OLD_INSTANCE --zone=us-central1-a
Fix #6: Update gcloud CLI
Outdated CLI = bugs, missing features, and weird errors.
Check version:
gcloud version
Current version (as of Feb 2026): 460.0.0+
Update gcloud:
# Standard installation
gcloud components update
# Snap installation (Linux)
snap refresh google-cloud-sdk
# Homebrew (Mac)
brew upgrade google-cloud-sdk
If update fails:
# Reinstall from scratch
curl https://sdk.cloud.google.com | bash
exec -l $SHELL
gcloud init
Fix #7: Check Network Connectivity
Firewall rules block most traffic by default.
Test connectivity:
# SSH into Compute Engine instance
gcloud compute ssh INSTANCE_NAME --zone=ZONE
# If SSH fails, check firewall rules
gcloud compute firewall-rules list
Common firewall fixes:
Allow SSH (port 22):
gcloud compute firewall-rules create allow-ssh \
--allow=tcp:22 \
--source-ranges=0.0.0.0/0 \
--target-tags=ssh-enabled
Allow HTTP/HTTPS:
gcloud compute firewall-rules create allow-http \
--allow=tcp:80,tcp:443 \
--source-ranges=0.0.0.0/0 \
--target-tags=http-server
Check Cloud Run ingress settings:
# Allow public access
gcloud run services update SERVICE_NAME \
--ingress=all \
--region=REGION
Check VPC routes:
# List routes
gcloud compute routes list
# Check VPC peering
gcloud compute networks peerings list
Fix #8: Restart/Redeploy Service
Simple restart fixes transient issues.
Compute Engine:
# Restart instance
gcloud compute instances stop INSTANCE_NAME --zone=ZONE
gcloud compute instances start INSTANCE_NAME --zone=ZONE
# Or reset (hard restart)
gcloud compute instances reset INSTANCE_NAME --zone=ZONE
Cloud Run:
# Redeploy (triggers new revision)
gcloud run deploy SERVICE_NAME \
--image=gcr.io/PROJECT_ID/IMAGE \
--region=REGION
# Or force new revision with no changes
gcloud run services update SERVICE_NAME \
--region=REGION \
--update-env-vars=UPDATED=$(date +%s)
Cloud Functions:
# Redeploy function
gcloud functions deploy FUNCTION_NAME \
--runtime=python311 \
--trigger-http \
--allow-unauthenticated
GKE:
# Restart deployment
kubectl rollout restart deployment DEPLOYMENT_NAME
# Check pod status
kubectl get pods
kubectl describe pod POD_NAME
Compute Engine Not Working?
Issue: Can't SSH Into Instance
Troubleshoot:
1. Check instance is running:
gcloud compute instances list
# Status should be "RUNNING"
2. Check firewall allows SSH:
# List firewall rules
gcloud compute firewall-rules list | grep ssh
# Create SSH rule if missing
gcloud compute firewall-rules create allow-ssh \
--allow=tcp:22 \
--source-ranges=0.0.0.0/0
3. Check instance has external IP:
gcloud compute instances describe INSTANCE_NAME \
--zone=ZONE \
--format="get(networkInterfaces[0].accessConfigs[0].natIP)"
4. Use IAP tunnel (if no external IP):
gcloud compute ssh INSTANCE_NAME \
--zone=ZONE \
--tunnel-through-iap
5. Check OS Login settings:
# Enable OS Login
gcloud compute instances add-metadata INSTANCE_NAME \
--zone=ZONE \
--metadata=enable-oslogin=TRUE
Issue: Instance Stuck in "PROVISIONING" or "STAGING"
Causes:
- Resource quota exceeded
- Zone capacity issue
- Image/snapshot problem
Fixes:
1. Check quota:
- Console → IAM & Admin → Quotas
- Look for CPU or disk quota exhausted
2. Try different zone:
# Delete stuck instance
gcloud compute instances delete INSTANCE_NAME --zone=us-central1-a
# Create in different zone
gcloud compute instances create INSTANCE_NAME \
--zone=us-central1-b \
--machine-type=e2-medium
3. Use different machine type:
# If n2-standard-4 unavailable, try e2-standard-4
gcloud compute instances create INSTANCE_NAME \
--zone=ZONE \
--machine-type=e2-standard-4
Cloud Run Not Working?
Issue: Deployment Fails
Troubleshoot:
1. Check container image exists:
# List images in Container Registry
gcloud container images list --repository=gcr.io/PROJECT_ID
# Or Artifact Registry
gcloud artifacts docker images list REGION-docker.pkg.dev/PROJECT_ID/REPOSITORY
2. Check service account permissions:
# Grant Cloud Run Admin role
gcloud projects add-iam-policy-binding PROJECT_ID \
--member="user:YOUR_EMAIL" \
--role="roles/run.admin"
3. Check deployment logs:
# View deployment errors
gcloud run services describe SERVICE_NAME \
--region=REGION \
--format="value(status.conditions)"
4. Test container locally:
# Run container locally first
docker run -p 8080:8080 gcr.io/PROJECT_ID/IMAGE
curl localhost:8080
Issue: "Container failed to start"
Causes:
- Application crashes on startup
- Port not exposed correctly
- Missing environment variables
- Cold start timeout
Fixes:
1. Check logs:
# View Cloud Run logs
gcloud run services logs read SERVICE_NAME \
--region=REGION \
--limit=50
2. Verify PORT environment variable:
# Cloud Run expects app to listen on $PORT (usually 8080)
# In your app:
port = os.environ.get("PORT", 8080)
app.run(host="0.0.0.0", port=port)
3. Increase timeout and resources:
gcloud run services update SERVICE_NAME \
--region=REGION \
--timeout=300 \
--cpu=2 \
--memory=2Gi
4. Set required environment variables:
gcloud run services update SERVICE_NAME \
--region=REGION \
--set-env-vars="KEY1=value1,KEY2=value2"
BigQuery Not Working?
Issue: Queries Timing Out
Causes:
- Query too complex/expensive
- Large dataset scan
- Quota exceeded
- Concurrent query limit hit
Fixes:
1. Optimize query:
-- Use partitioned tables
SELECT *
FROM `project.dataset.table`
WHERE DATE(timestamp) = "2026-02-10" -- Uses partition pruning
-- Avoid SELECT *
SELECT specific_column1, specific_column2
FROM `project.dataset.table`
LIMIT 1000
2. Check query cost before running:
# Estimate query cost
bq query --dry_run 'SELECT * FROM `project.dataset.table`'
3. Increase timeout:
# Set longer timeout (milliseconds)
bq query --max_rows=1000 --timeout=300000 'SELECT ...'
4. Check quota usage:
- Console → BigQuery → Quotas
- Look for "Query usage" and "Concurrent queries"
Cloud Storage Not Working?
Issue: "Access Denied" When Reading Object
Causes:
- IAM permissions missing
- Bucket-level access not configured
- Object ACL restrictions
- Requester Pays bucket
Fixes:
1. Grant Storage permissions:
# Grant yourself Storage Admin
gcloud projects add-iam-policy-binding PROJECT_ID \
--member="user:YOUR_EMAIL" \
--role="roles/storage.admin"
# Or grant on specific bucket
gcloud storage buckets add-iam-policy-binding gs://BUCKET_NAME \
--member="user:YOUR_EMAIL" \
--role="roles/storage.objectViewer"
2. Make bucket public (if appropriate):
# Make all objects public
gcloud storage buckets add-iam-policy-binding gs://BUCKET_NAME \
--member="allUsers" \
--role="roles/storage.objectViewer"
3. Check if Requester Pays:
# Specify billing project for Requester Pays buckets
gcloud storage cp gs://BUCKET_NAME/file.txt . \
--billing-project=PROJECT_ID
GKE (Kubernetes) Not Working?
Issue: Cluster Creation Fails
Causes:
- Quota exceeded
- Zone capacity
- API not enabled
- Network configuration issue
Fixes:
1. Enable GKE API:
gcloud services enable container.googleapis.com
2. Check quota:
- Console → IAM & Admin → Quotas
- Filter: "Kubernetes Engine API"
- Look for "In-use IP addresses" and "CPUs"
3. Use Autopilot mode (simpler):
# Create Autopilot cluster (managed for you)
gcloud container clusters create-auto CLUSTER_NAME \
--region=REGION
4. Try different zone/region:
# If us-central1 full, try us-east1
gcloud container clusters create CLUSTER_NAME \
--zone=us-east1-b
Issue: Can't Connect to Cluster
Troubleshoot:
1. Get cluster credentials:
# Configure kubectl
gcloud container clusters get-credentials CLUSTER_NAME \
--region=REGION
2. Verify kubectl context:
# Check current context
kubectl config current-context
# List all contexts
kubectl config get-contexts
3. Test cluster access:
# List nodes
kubectl get nodes
# List pods
kubectl get pods --all-namespaces
4. Check firewall:
- Master authorized networks might be blocking you
- Console → GKE → Cluster → Networking
- Add your IP to authorized networks
When GCP Actually Goes Down
What Happens
Recent major outages:
- November 2025: 4-hour Cloud Run outage in us-central1 (deployment issue)
- August 2025: 2-hour Compute Engine disruption (network configuration)
- May 2025: 3-hour Cloud Storage degradation in europe-west1 (hardware failure)
- February 2025: 1-hour BigQuery slowdown (internal service issue)
Typical causes:
- Regional infrastructure failures
- Network configuration errors
- Software deployment bugs
- Power/cooling issues in data centers
- Rare: Multi-region backbone failures
How Google Responds
Communication channels:
- status.cloud.google.com — Primary source
- @googlecloud on Twitter/X
- Email alerts (if subscribed to status updates)
- In-console notifications
Timeline:
- 0-15 min: Developers report issues on Twitter/Reddit
- 15-30 min: Google acknowledges on status dashboard
- 30-90 min: Regular updates posted
- Resolution: Usually 1-4 hours for major outages
Post-incident:
- Detailed incident report published (7-14 days later)
- Root cause analysis
- Remediation steps taken
- SLA credits issued (if applicable)
What to Do During Outages
1. Check if multi-region helps:
# Switch to backup region
gcloud config set compute/region europe-west1
gcloud run deploy SERVICE_NAME --region=europe-west1
2. Use cached/backup data:
- Serve from Cloud CDN cache
- Use read replicas in different regions
- Activate disaster recovery plan
3. Monitor status dashboard:
- status.cloud.google.com
- Subscribe to RSS feed for automated alerts
- Follow @googlecloud
4. File support ticket:
- Console → Support → Create Case
- Reference status dashboard incident number
- Request SLA credit if applicable
GCP Down Checklist
Follow these steps in order:
Step 1: Verify it's actually down
- Check Google Cloud Status Dashboard
- Check API Status Check
- Search Twitter: "GCP down"
- Test specific service via API/CLI
Step 2: Quick authentication fixes
- Run
gcloud auth list(verify logged in) - Run
gcloud config get-value project(verify correct project) - Re-authenticate:
gcloud auth login - Set application default credentials:
gcloud auth application-default login
Step 3: Enable APIs and check billing
- Verify required APIs enabled:
gcloud services list --enabled - Enable missing APIs:
gcloud services enable SERVICE.googleapis.com - Check billing enabled:
gcloud beta billing projects describe PROJECT_ID - Link project to billing account if needed
Step 4: Check IAM permissions
- Verify your roles:
gcloud projects get-iam-policy PROJECT_ID - Grant missing roles (Editor, Compute Admin, etc.)
- Check service account permissions
- Enable Domain Delegation if needed (for workspace)
Step 5: Check quotas and limits
- Console → IAM & Admin → Quotas
- Look for quotas at 100% usage
- Request quota increase if needed
- Try different region (separate quotas)
Step 6: Network troubleshooting
- Check firewall rules:
gcloud compute firewall-rules list - Verify instance has external IP (if needed)
- Test connectivity with
gcloud compute ssh - Check VPC routes and peering
Step 7: Service-specific fixes
- Compute Engine: Restart instance, check zone capacity
- Cloud Run: Check logs, redeploy service
- BigQuery: Optimize query, check quota
- Cloud Storage: Verify bucket permissions
- GKE: Get credentials, check cluster status
Step 8: Nuclear option
- Update gcloud CLI:
gcloud components update - Recreate resource in different region
- Contact Google Cloud Support
- Check Google Cloud Community
Prevent Future Issues
1. Set Up Multi-Region Redundancy
Don't put all your eggs in one region.
Best practices:
Compute Engine:
# Create instance group spanning multiple zones
gcloud compute instance-groups managed create IG_NAME \
--template=TEMPLATE_NAME \
--size=3 \
--zones=us-central1-a,us-central1-b,us-central1-c
Cloud Run:
# Deploy to multiple regions
gcloud run deploy SERVICE_NAME --region=us-central1 --image=IMAGE
gcloud run deploy SERVICE_NAME --region=europe-west1 --image=IMAGE
# Use Cloud Load Balancing for global distribution
Cloud Storage:
# Use multi-region bucket
gcloud storage buckets create gs://BUCKET_NAME \
--location=US # Multi-region (not single region)
BigQuery:
- Use dataset in multi-region location (US, EU)
- Replicate critical datasets across regions
- Use BigQuery Omni for cross-cloud queries
2. Monitor Proactively
Don't wait for users to report issues.
Set up monitoring:
1. Cloud Monitoring (native):
# Create uptime check
gcloud monitoring uptime-checks create HTTP_CHECK_NAME \
--display-name="My Service Health Check" \
--resource-type="gce-instance" \
--http-check-path="/"
2. Cloud Alerting:
- Console → Monitoring → Alerting
- Create alert policies for:
- Instance CPU > 80%
- Cloud Run error rate > 5%
- BigQuery job failures
- Cloud Storage 4xx/5xx errors
3. External monitoring:
- Use API Status Check for independent monitoring
- Set up alerts to Slack, Discord, email, webhooks
- Monitor from multiple global locations
4. Subscribe to status updates:
- status.cloud.google.com → Subscribe
- Get email/SMS alerts for incidents
- RSS feed for automated systems
3. Implement Proper Error Handling
Your code should gracefully handle GCP failures.
Best practices:
Exponential backoff:
from google.api_core import retry
# Automatic retry with exponential backoff
@retry.Retry(
predicate=retry.if_exception_type(Exception),
initial=1.0,
maximum=60.0,
multiplier=2.0,
deadline=300.0
)
def call_gcp_api():
# Your API call
pass
Circuit breaker:
# Stop hammering failed service
from pybreaker import CircuitBreaker
gcp_breaker = CircuitBreaker(fail_max=5, timeout_duration=60)
@gcp_breaker
def call_gcp_service():
# API call
pass
Fallback strategies:
def get_data():
try:
return fetch_from_bigquery()
except Exception:
# Fallback to cached data
return get_from_memcache()
4. Use Infrastructure as Code
Recreate infrastructure quickly if needed.
Terraform example:
# terraform/main.tf
resource "google_compute_instance" "app_server" {
name = "app-server"
machine_type = "e2-medium"
zone = var.primary_zone
# Automatic failover to secondary zone
lifecycle {
create_before_destroy = true
}
}
# Easy to deploy to backup region
# terraform apply -var="region=europe-west1"
gcloud scripts:
#!/bin/bash
# deploy.sh - Reproducible deployment
PROJECT_ID="my-project"
REGION="us-central1"
gcloud config set project $PROJECT_ID
# Enable APIs
gcloud services enable compute.googleapis.com
gcloud services enable run.googleapis.com
# Deploy Cloud Run
gcloud run deploy app \
--image=gcr.io/$PROJECT_ID/app \
--region=$REGION \
--allow-unauthenticated
5. Test Disaster Recovery
Hope for the best, prepare for the worst.
DR testing checklist:
1. Region failover test:
- Simulate primary region outage
- Switch traffic to secondary region
- Measure RTO (Recovery Time Objective)
- Verify data consistency
2. Data backup/restore test:
# Test Cloud SQL backup restore
gcloud sql backups create \
--instance=INSTANCE_NAME
gcloud sql backups restore BACKUP_ID \
--backup-instance=SOURCE_INSTANCE \
--backup-instance-project=PROJECT_ID \
--restore-instance=TARGET_INSTANCE
3. Service degradation scenarios:
- What if BigQuery is down? Can you serve cached results?
- What if Cloud Storage is down? Can you serve from CDN?
- What if Cloud Run is down? Can you failover to Compute Engine?
4. Document runbooks:
- Step-by-step recovery procedures
- Who to contact (Google Support, on-call engineer)
- Communication templates for users
- SLA credit request process
Key Takeaways
Before assuming GCP is down:
- ✅ Check Google Cloud Status Dashboard
- ✅ Verify authentication:
gcloud auth list - ✅ Check correct project:
gcloud config get-value project - ✅ Search Twitter for "GCP down" in your region
Common fixes:
- Re-authenticate (
gcloud auth login) - Enable required APIs (
gcloud services enable) - Check/grant IAM permissions
- Verify billing account linked
- Check resource quotas (IAM & Admin → Quotas)
- Try different region
Service-specific issues:
- Compute Engine: Check firewall, instance status, zone capacity
- Cloud Run: Check logs, container image, environment variables
- BigQuery: Optimize query, check quota, increase timeout
- Cloud Storage: Verify IAM, check Requester Pays
- GKE: Get credentials, check cluster health, verify quota
If GCP is actually down:
- Monitor status.cloud.google.com
- Switch to backup region if configured
- Activate disaster recovery plan
- File support ticket for SLA credits
Prevent future issues:
- Deploy to multiple regions
- Set up Cloud Monitoring + alerting
- Use API Status Check for external monitoring
- Implement retry logic and error handling
- Test disaster recovery procedures regularly
Remember: Most "GCP down" issues are authentication, permissions, or quota problems—not actual outages. Work through the checklist systematically.
Need real-time GCP status monitoring? Track Google Cloud uptime with API Status Check - Get instant alerts when GCP services go down.
Related Resources
- Is Google Cloud Down Right Now? — Live status check
- GCP Outage History — Past incidents and timeline
- GCP vs AWS Uptime Comparison — Which cloud provider is more reliable?
- Multi-Cloud Failover Strategy — Never go down again
- API Outage Response Plan — How to handle downtime like a pro
Monitor Your APIs
Check the real-time status of 100+ popular APIs used by developers.
View API Status →