Is OpenAI Down? Complete Guide to ChatGPT, GPT-4, DALL-E & API Outages (2026)
TLDR: Check if OpenAI is down right now at apistatuscheck.com/api/openai. This guide covers how to verify ChatGPT and GPT-4 API status, common causes of OpenAI outages, and how to build fallback logic so your app stays running during downtime.
TLDR: Check if OpenAI is down at apistatuscheck.com/api/openai and status.openai.com. Build resilient AI integrations with GPT-3.5 fallbacks, exponential backoff retries, aggressive caching, and queue-based processing so your features degrade gracefully instead of completely breaking during outages.
Your ChatGPT conversation just stopped mid-sentence. Your app's AI features are throwing 500 errors. Your users are flooding support asking why the chatbot isn't responding. OpenAI might be down — and for products built on GPT-4, DALL-E, or Whisper, this means your core features are suddenly unavailable.
OpenAI outages are particularly challenging because the platform powers everything from consumer-facing ChatGPT to mission-critical API integrations handling customer support, content generation, code assistance, and image creation. Here's how to quickly diagnose OpenAI issues, build resilient AI integrations, and keep your product functional when OpenAI has problems.
Is OpenAI Actually Down Right Now?
Before you debug your prompts or check your API keys, confirm it's an OpenAI-side issue:
- API Status Check — OpenAI — Independent monitoring with real-time status and response times
- Is OpenAI Down? — Quick status check with 24-hour incident history
- OpenAI Official Status — OpenAI's status page covering all services
- Downdetector — OpenAI — Community-reported outages with geographic heatmaps
- ChatGPT Direct Test — Try ChatGPT web interface directly
Understanding OpenAI's Service Architecture
OpenAI isn't a single service. Different models and endpoints can fail independently, creating partial outages:
| Service | What It Does | When It Fails |
|---|---|---|
| ChatGPT Web | Consumer chat interface | Web app unusable, API may still work |
| GPT-4 API | Most capable model endpoint | Apps using GPT-4 fail, GPT-3.5 may work |
| GPT-3.5 Turbo | Faster, cheaper model | Budget integrations fail |
| GPT-4 Turbo | Longer context window variant | Vision and long-context features fail |
| DALL-E 3 | Image generation | Image creation fails, text models unaffected |
| DALL-E 2 | Legacy image generation | Older image integrations fail |
| Whisper API | Audio transcription | Speech-to-text fails |
| TTS API | Text-to-speech | Voice generation fails |
| Embeddings | Vector representations | Search/similarity features fail |
| Moderation | Content filtering | Safety checks fail |
| Assistants API | Stateful AI assistants | Thread-based apps fail |
| Fine-tuning | Custom model training | Training jobs stuck |
| Codex (deprecated) | Code generation | Legacy integrations fail |
Critical insight: OpenAI often has partial outages where GPT-3.5 works but GPT-4 is degraded, or the API works but ChatGPT web is down. Always test your specific model endpoint.
Common OpenAI Error Codes During Outages
| Error | Meaning | Action |
|---|---|---|
429: Rate limit reached |
Too many requests OR capacity issues | Retry with exponential backoff |
500: Internal server error |
OpenAI internal issue | Transient, retry after delay |
503: Service unavailable |
OpenAI temporarily overloaded | Retry with backoff, fallback to GPT-3.5 |
502: Bad gateway |
OpenAI infrastructure issue | Wait and retry |
524: A timeout occurred |
Request took too long | Reduce prompt size or use streaming |
429: You exceeded your current quota |
Billing issue (not outage) | Check billing dashboard |
context_length_exceeded |
Token limit exceeded | Reduce prompt or use GPT-4 Turbo |
model_not_found |
Model deprecated or unavailable | Check model availability |
| Connection timeout | Network or OpenAI unreachable | Check status page |
Rate limit vs. capacity issues: A 429 error can mean you hit your quota OR OpenAI is rationing capacity during high demand. Check status.openai.com to differentiate.
Developer Best Practices: Building Resilient OpenAI Integrations
1. Streaming Responses for Better UX
Streaming makes your app feel responsive and continues to work during slowdowns:
async function streamingCompletion(
messages: Array<{ role: string; content: string }>,
onChunk: (text: string) => void
) {
const stream = await openai.chat.completions.create({
model: 'gpt-4-turbo-preview',
messages,
stream: true,
})
let fullText = ''
for await (const chunk of stream) {
const content = chunk.choices[0]?.delta?.content || ''
if (content) {
fullText += content
onChunk(content)
}
}
return fullText
}
// Express endpoint with SSE
app.get('/stream-chat', async (req, res) => {
res.setHeader('Content-Type', 'text/event-stream')
res.setHeader('Cache-Control', 'no-cache')
res.setHeader('Connection', 'keep-alive')
try {
await streamingCompletion(
[{ role: 'user', content: req.query.prompt as string }],
(chunk) => {
res.write(`data: ${JSON.stringify({ chunk })}\n\n`)
}
)
res.write('data: [DONE]\n\n')
res.end()
} catch (error: any) {
res.write(`data: ${JSON.stringify({ error: error.message })}\n\n`)
res.end()
}
})
Why streaming matters during outages: If OpenAI is slow but not down, streaming delivers partial results. Users see progress instead of waiting for a timeout.
2. Context Window Management
Avoid context_length_exceeded errors, especially during degraded performance:
import { encoding_for_model } from '@dqbd/tiktoken'
function countTokens(text: string, model = 'gpt-4'): number {
const encoding = encoding_for_model(model)
const tokens = encoding.encode(text)
encoding.free()
return tokens.length
}
function truncateToTokenLimit(
messages: Array<{ role: string; content: string }>,
model = 'gpt-4-turbo-preview',
maxTokens = 8000 // Leave room for response
) {
const limits: Record<string, number> = {
'gpt-4': 8192,
'gpt-4-turbo-preview': 128000,
'gpt-3.5-turbo': 4096,
'gpt-3.5-turbo-16k': 16384,
}
const modelLimit = limits[model] || 8192
const targetLimit = Math.min(maxTokens, modelLimit - 1000) // Reserve for response
// Always keep system message and last user message
const systemMessages = messages.filter(m => m.role === 'system')
const lastUserMessage = [...messages].reverse().find(m => m.role === 'user')
const otherMessages = messages.filter(
m => m.role !== 'system' && m !== lastUserMessage
)
let totalTokens =
systemMessages.reduce((sum, m) => sum + countTokens(m.content, model), 0) +
(lastUserMessage ? countTokens(lastUserMessage.content, model) : 0)
const result = [...systemMessages]
// Add other messages from most recent until we hit limit
for (let i = otherMessages.length - 1; i >= 0; i--) {
const message = otherMessages[i]
const messageTokens = countTokens(message.content, model)
if (totalTokens + messageTokens <= targetLimit) {
result.push(message)
totalTokens += messageTokens
} else {
console.log(`Truncated ${i + 1} old messages to fit context window`)
break
}
}
// Add last user message at the end
if (lastUserMessage) {
result.push(lastUserMessage)
}
return result
}
// Usage
const truncatedMessages = truncateToTokenLimit(conversationHistory, 'gpt-4-turbo-preview')
const completion = await openai.chat.completions.create({
model: 'gpt-4-turbo-preview',
messages: truncatedMessages,
})
3. Multi-Provider Fallback (Advanced)
For critical features, implement fallback to alternative AI providers:
import OpenAI from 'openai'
import Anthropic from '@anthropic-ai/sdk'
const openai = new OpenAI({ apiKey: process.env.OPENAI_API_KEY })
const anthropic = new Anthropic({ apiKey: process.env.ANTHROPIC_API_KEY })
async function robustCompletion(
messages: Array<{ role: string; content: string }>,
options: { preferProvider?: 'openai' | 'anthropic' } = {}
) {
const providers = options.preferProvider === 'anthropic'
? ['anthropic', 'openai']
: ['openai', 'anthropic']
for (const provider of providers) {
try {
if (provider === 'openai') {
const completion = await openai.chat.completions.create({
model: 'gpt-4-turbo-preview',
messages,
})
return {
content: completion.choices[0].message.content!,
provider: 'openai',
model: completion.model,
}
} else {
// Convert to Anthropic format
const systemMessage = messages.find(m => m.role === 'system')?.content
const anthropicMessages = messages
.filter(m => m.role !== 'system')
.map(m => ({
role: m.role as 'user' | 'assistant',
content: m.content,
}))
const completion = await anthropic.messages.create({
model: 'claude-3-5-sonnet-20241022',
max_tokens: 4096,
system: systemMessage,
messages: anthropicMessages,
})
const content = completion.content[0].type === 'text'
? completion.content[0].text
: ''
return {
content,
provider: 'anthropic',
model: completion.model,
}
}
} catch (error: any) {
const isLastProvider = provider === providers[providers.length - 1]
if (isLastProvider) {
throw new Error(`All AI providers failed. Last error: ${error.message}`)
}
console.warn(`${provider} failed, trying next provider...`)
await new Promise(r => setTimeout(r, 1000))
}
}
}
// Usage
const result = await robustCompletion([
{ role: 'system', content: 'You are a helpful assistant.' },
{ role: 'user', content: 'Explain machine learning.' },
])
console.log(`Response from ${result.provider} (${result.model}):`, result.content)
Important: Claude (Anthropic) and GPT-4 have different personalities and capabilities. Your prompts may need tuning for consistent results across providers.
4. Monitoring and Alerting
Track OpenAI API health proactively:
interface OpenAIMetrics {
latency: number
tokens: number
cost: number
model: string
success: boolean
errorCode?: string
}
async function trackOpenAICall(fn: () => Promise<any>): Promise<any> {
const start = Date.now()
try {
const result = await fn()
const latency = Date.now() - start
await metrics.histogram('openai.latency_ms', latency, {
model: result.model,
success: 'true',
})
if (result.usage) {
await metrics.counter('openai.tokens', result.usage.total_tokens, {
model: result.model,
})
// Approximate cost tracking
const cost = calculateCost(result.model, result.usage)
await metrics.counter('openai.cost_usd', cost, {
model: result.model,
})
}
return result
} catch (error: any) {
const latency = Date.now() - start
await metrics.histogram('openai.latency_ms', latency, {
model: 'unknown',
success: 'false',
})
await metrics.counter('openai.errors', 1, {
code: error.status || 'network',
type: error.type || 'unknown',
})
throw error
}
}
// Alert rules to configure:
// - openai.errors{code=500} > 5 in 1 min → page on-call
// - openai.errors{code=429} > 10 in 1 min → warning (capacity issue)
// - openai.latency_ms p95 > 30000 → warning (slow API)
// - openai.errors rate > 20% for 3 min → critical
Common OpenAI Issues and Solutions
Issue 1: 429 Rate Limit Errors
Symptoms:
Rate limit reached for requestsYou exceeded your current quota, please check your plan and billing details
Causes:
- Hit your requests-per-minute (RPM) or tokens-per-minute (TPM) limit
- OpenAI rationing capacity during high demand (less common)
- Billing issue (unpaid invoice, card declined)
Solutions:
Check your limits:
- Go to https://platform.openai.com/account/rate-limits
- See your tier (Free, Pay-as-you-go, Tier 1-5)
- Higher tiers = higher limits
Implement proper rate limiting:
import Bottleneck from 'bottleneck' // Tier 1: 500 RPM for GPT-4 const limiter = new Bottleneck({ minTime: 120, // 120ms between requests = ~500 per minute maxConcurrent: 10, }) const rateLimitedCompletion = limiter.wrap(async (messages: any[]) => { return await openai.chat.completions.create({ model: 'gpt-4-turbo-preview', messages, }) })Request a limit increase:
- Platform > Limits > Request increase
- Provide use case details
- Usually approved within 24 hours
Check billing:
- Platform > Billing
- Verify card is valid and payment succeeded
- Add credits if using prepaid
Issue 2: 500/503 Server Errors
Symptoms:
The server had an error while processing your request- Requests timing out
- Intermittent failures
Solutions:
- Implement retries (see code examples above)
- Check status.openai.com — likely an outage
- Fallback to GPT-3.5 temporarily
- Enable caching to serve recent queries
- Queue non-urgent requests for later processing
Issue 3: Context Length Exceeded
Symptoms:
This model's maximum context length is 8192 tokens- Requests failing for long conversations
Solutions:
Use GPT-4 Turbo (128k context vs 8k)
Truncate conversation history (see code example above)
Summarize old messages:
async function summarizeConversation(messages: any[]) { const summary = await openai.chat.completions.create({ model: 'gpt-3.5-turbo', messages: [ { role: 'system', content: 'Summarize this conversation in 2-3 sentences.', }, { role: 'user', content: JSON.stringify(messages), }, ], }) return summary.choices[0].message.content }Use embeddings + retrieval for long documents instead of stuffing everything in context
Issue 4: ChatGPT Web Works, But API Fails (or Vice Versa)
Cause: Different infrastructure for web vs API
Solution:
- Check status.openai.com for specific service status
- Test directly:
curl https://api.openai.com/v1/models -H "Authorization: Bearer YOUR_KEY" - Clear API key cache (some libraries cache auth failures)
The "OpenAI Is Down" Troubleshooting Checklist
Work through this systematically:
Step 1: Confirm It's OpenAI
- Check apistatuscheck.com/api/openai — Real-time monitoring
- Check status.openai.com — Official status
- Test ChatGPT web — chat.openai.com
- Check Twitter/Reddit — Search "OpenAI down"
Step 2: Test Direct API Call
curl https://api.openai.com/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer YOUR_API_KEY" \
-d '{
"model": "gpt-3.5-turbo",
"messages": [{"role": "user", "content": "test"}]
}'
If this fails, OpenAI is definitely down for you.
Step 3: Check Your Account
- Platform > Billing — Any unpaid invoices?
- Platform > API keys — Is your key valid?
- Platform > Usage — Have you hit quota limits?
- Platform > Rate limits — Exceeded RPM/TPM?
Step 4: Model-Specific Issues
- Try GPT-3.5 if GPT-4 fails
- Try GPT-4 if GPT-4 Turbo fails
- Check model availability:
curl https://api.openai.com/v1/models -H "Authorization: Bearer YOUR_KEY"
Step 5: Network/Infrastructure
- Can you reach api.openai.com?
ping api.openai.com curl -I https://api.openai.com - Check your server's outbound firewall rules
- Verify DNS resolution
- Try from a different network/server
Alternative AI Providers (If You Need Redundancy)
If OpenAI outages are impacting your business, consider multi-provider architecture:
| Provider | Best Models | Strengths | Pricing vs GPT-4 |
|---|---|---|---|
| Anthropic (Claude) | Claude 3.5 Sonnet, Opus | Long context, reasoning, safety | Similar |
| Google (Gemini) | Gemini 1.5 Pro | Multimodal, long context (1M tokens) | Cheaper |
| Mistral AI | Mistral Large | European hosting, fast | Cheaper |
| Cohere | Command R+ | Enterprise, RAG-optimized | Cheaper |
| OpenRouter | All models | Aggregator with automatic fallback | Markup fee |
| Local (Ollama) | Llama 3, Mixtral | Free, private, offline | Free (your hardware) |
Quick Multi-Provider Example with OpenRouter
OpenRouter provides a unified API for multiple providers with automatic fallback:
import OpenAI from 'openai'
const openrouter = new OpenAI({
baseURL: 'https://openrouter.ai/api/v1',
apiKey: process.env.OPENROUTER_API_KEY,
defaultHeaders: {
'HTTP-Referer': 'https://yourapp.com',
'X-Title': 'Your App Name',
},
})
const completion = await openrouter.chat.completions.create({
// OpenRouter will try these in order, falling back if one fails
model: 'openai/gpt-4-turbo-preview',
// or: 'anthropic/claude-3-5-sonnet'
// or: 'google/gemini-pro-1.5'
messages: [{ role: 'user', content: 'Hello!' }],
})
OpenRouter handles fallback, rate limiting, and cost optimization for you.
Local Models with Ollama (Offline Fallback)
For truly critical features, run a local model as last resort:
# Install Ollama
curl https://ollama.ai/install.sh | sh
# Pull a model
ollama pull llama3:8b
# Run server
ollama serve
// Use Ollama as fallback
async function completionWithLocalFallback(messages: any[]) {
try {
// Try OpenAI first
return await openai.chat.completions.create({
model: 'gpt-4-turbo-preview',
messages,
})
} catch (error) {
console.warn('OpenAI failed, falling back to local Llama 3')
// Fallback to local Ollama
const response = await fetch('http://localhost:11434/api/chat', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
model: 'llama3:8b',
messages,
stream: false,
}),
})
const data = await response.json()
return {
choices: [{
message: {
content: data.message.content,
role: 'assistant',
},
}],
model: 'llama3:8b',
}
}
}
Quality tradeoff: Local models like Llama 3 are significantly less capable than GPT-4, but they work offline and are free.
What NOT to Do During an OpenAI Outage
- ❌ Don't hammer the API with retries — Makes outages worse for everyone
- ❌ Don't switch providers mid-conversation — Context doesn't transfer cleanly
- ❌ Don't disable AI features entirely — Use fallbacks and queuing instead
- ❌ Don't ignore context limits — Causes failures even when OpenAI is up
- ❌ Don't cache responses indefinitely — Stale AI responses can be harmful
- ❌ Don't panic-refund users — Most outages resolve within 30 minutes
Get Notified Before Your Users Complain
Every minute of an OpenAI outage means degraded user experience. Set up monitoring now:
- Bookmark apistatuscheck.com/api/openai for real-time status
- Set up instant alerts via API Status Check integrations — Discord, Slack, email, webhooks
- Subscribe to status.openai.com for official updates
- Follow @OpenAIStatus on Twitter
- Instrument your code — track latency, error rates, token usage
- Test your fallback logic — actually try it before you need it in production
- Set up queue-based processing — so tasks retry automatically
- Implement caching — reduce API dependency for repeated queries
The best AI architecture isn't one that never fails — it's one that degrades gracefully, falls back to alternatives, and keeps your product functional when OpenAI has problems.
API Status Check monitors OpenAI and 100+ other APIs in real-time. Set up free alerts at apistatuscheck.com.
Monitor Your APIs
Check the real-time status of 100+ popular APIs used by developers.
View API Status →